

Safety and security traps of 5G for PPDR

Marko Pust, 5G Safety Workshop

Bled, 14.12.2018

Agenda

- About us
- Cybersecurity, and why it concern us
- Tradional approach to security
- Specifics of 5G security
- Proposed framework
- Questions and discusion

About us

- IT infrastructure
 - Mission critical systems
- PKI infrastructure
- Security services
 - Data security
 - Security management
 - Identity management
- Custom development
 - Java

Threat actors

- Organized crime
- Hactivist groups
- Insiders
- Nation state.

Traditional security practice

- User identity management based on (U)SIM
- Mutual authentication between network and users
- Securing the path between communication parties.

Security challenges ahead of 5G

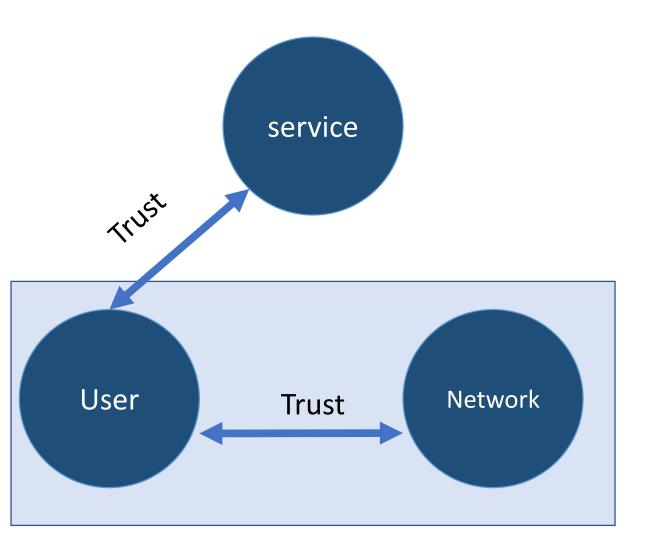
- New business models.
 - Diversity of applications and services
 - PPDR, IoT, ...
- IT-driven network architecture
 - SDN
- Heterogeneous access
 - One of the features of next-generation access networks
 - Different access technologies (WiFi, LTE...)
 - Security architecture suitable for different access technologies.
- Privacy protection
 - Healthcare, smart home, smart transport...
 - Privacy leak can cause a serious consequences.

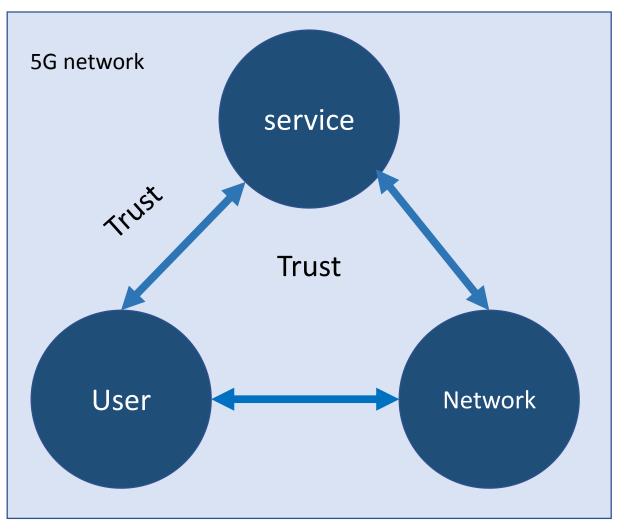
What is the remedy?

- 5G in mission critical application will bring a new focus to security chalanges.
 - ... but basic concepts still remeinst the same.
- Embedded security into all phases of the lifecycle
 - Security (and privacy) by design
- Several IT security methodologies

Security framework functional building blocks

Security configuration and management Security monitoring and analysis Communication and connectivity protection **Endpoint protection Data Protection Security policy and regulation**




- Endpoint protection implements defensive capabilities on devices at the edge and in the cloud.
- Primary concerns include physical security functions, cyber security techniques and an authoritative identity.
- Endpoint protection alone is insufficient, as the endpoints must communicate with each other, and communications may be a source of vulnerability.

- e Endpoint Physical Security provides physical protection of the endpoint with anti-tampering and theft prevention mechanisms to prevent uncontrolled changes or removal of the endpoint.
- Endpoint Identity is based on the inherent properties of an endpoint that distinguishes it from other endpoints.
- **Endpoint Integrity Protection** ensures the endpoint is in the configuration required to perform its functions predictably.
- Endpoint Access Control ensures that proper identification, authentication and authorization is performed prior to granting any resources or services.
- Endpoint Secure Configuration and management controls updates of security policy and configuration at the endpoint, including upgrades and patches of known vulnerabilities.
- Endpoint Data Protection provides controls to preserve the integrity, confidentiality and availability of its data.

New trust model and identity management

- Cryptographic Protection uses cryptographic technologies to protect authenticity of communicating parties and integrity and confidentiality of exchanged data and metadata
- Information Flow Protection ensures that only permitted kinds of messages and content reach sensitive systems and networks by isolating network flows using network segmentation and perimeter protection technologies.

Monitoring

- Secure Remote Logging:
- Monitoring data is gathered by a local agent running on each of the endpoints and communications

Analysis

- Rule-Based Analysis monitors for violations of predefined policy rules that define events that should never occur in the system.
- Behavioral Analysis observes the usage patterns in the system and learns what is appropriate behavior for the system.

Act

- Proactive / reactive responses
- Root Cause/Forensics analysis and forensics

- Security Management is responsible for ensuring and executing the secure and controlled changes to the security policy and functions throughout the system. It should remain separate from Secure Operational Management.
- Endpoint Identity Management generates, updates and revokes machine (and user) principals and cryptographic materials (keys, certificates, etc.) used in the identification of the endpoint.
- Endpoint Configuration & Management is responsible for configuring and managing secure and controlled changes to the endpoint including both endpoint operational and security function.

- Generally speaking data can be
 - Data at rest (DB, file systems, ...)
 - Data in use (RAM, cache...)
 - Data in motion (network)
- Data must be protected against
 - unauthorized access and
 - uncontrolled changes
 - By applying functions such as confidentiality controls, integrity controls, access control, isolation and replication.

- The Security Policy and regulation model describes security objectives implied by regulatory, organizational, technical and other aspects
- For each of the currently mentioned building block there must be some kind of security policy
 - Standardization like ETSI, ISO, NIST...
 - Good practice and technical guidelines
 - Regulations like eIDAS, GDPR, ZInfV, ZKI...

Questions